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The degradation product C14�C23 2 was obtained using ethenolysis with the 2nd-generation Hoveyda-
Grubbs catalyst from 62-membered lactone in symbiodinolide (1). The absolute configurations of three
chiral centers in fragment 2 were assigned as 17R, 18R, and 21R by a combination of J-based configuration
analysis and the Mosher–Riguera method.
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Symbiodinolide (1), a unique super-carbon-chain compound
(SCC)1 with a molecular weight of 2860, was isolated from the Okin-
awan symbiotic dinoflagellate Symbiodinium sp. (Fig. 1). Recently, its
isolation, structure elucidation, and the partial stereochemistries
were reported.2 In our continuing investigation on the stereochem-
ical assignment of symbiodinolide (1), the absolute configurations of
three chiral centers (C17, C18, and C21) in degradation product 2
were assigned by a combination of J-based configuration analysis
(JBCA),3 ROESY correlations, and the Mosher–Riguera method.4

In the course of the further stereochemical analysis of symbio-
dinolide (1), the relative configurations between the vicinal stereo-
centers C17 and C18 were determined by J-based configuration
analysis. Two- and three-bond 13C�1H coupling constants (2,3JC,H)
of symbiodinolide were measured in CD3OD. The small 3JC19/H17

values (1.1 Hz) indicated that C19 is gauche to H17, and the gem-
inal 13C�1H coupling constants (2JC,H) also provide conformational
information (when an oxygen functionality on a carbon atom is
gauche to its geminal proton, 2JC,H becomes large, and when it is
anti, the value becomes small), so the large 2JC17/H18 values
(5.5 Hz) identified that 17�OH is gauche to H18. Thereby, three
possible conformers A-3 (threo), B-1, and B-3 (erythro) can be iden-
tified in Figure 2.

The ROESY correlations for C18-Me/H17 in symbiodinolide indi-
cated gauche relations for C18-Me and H17 in two conformers A-3
and B-3. Because of anti-relations for C18-Me and H15 in A-3, ery-
ll rights reserved.

).
thro configuration B-3 was finally assigned on the basis of the
crucial ROESY correlations for C18-Me/H15 (Fig. 2). The relative
configurations of vicinal centers C17 and C18 were concluded as
shown in Figure 3.

However, the stereochemical assignment of the other stereo-
centers in the 62-membered polyunsaturated lactone of 1 could
not be completed by spectral analysis due to that the signals are
largely overlapping. Thereby, the chemical degradation reaction
was essential for symbiodinolide (1). Ethenolysis5 (cross-metathe-
sis with ethene) is an attractive alternative to ozonolysis and per-
iodate oxidation of alkenes because of its wide functional group
tolerance, comparatively mild reaction conditions and the de-
graded products without redundant modification. Here, we carried
out an effective ethenolysis with the commercially available 2nd-
generation Hoveyda-Grubbs (Hoveyda-Grubbs II) catalyst6 under
ordinary ethene pressure (balloon) at room temperature as
described before.7 As a result, an acetal C14�C23 2 and two other
terminal olefin degradation products (in small amounts, respec-
tively) were successfully obtained from the 62-membered polyun-
saturated lactone (Scheme 1). The structure of C14�C23 fragment
2 was confirmed by the analysis of 1H NMR, COSY correlations, and
HR MS.8

The absolute configurations at two chiral centers (C17 and C21)
of 1,5-diol 2 could be determined using the Mosher–Riguera meth-
od. A trace diol 2 (� 0.1 mg) was dissolved in 2% DMAP solution in
CH2Cl2, and then added Et3N, and (R)-(�)- or (S)-(+)-MTPACl. The
mixture was stirred at room temperature for 21 h. After the
addition of N,N-dimethyl-1,3-propanediamine, the solvent was



Figure 2. 2,3JC,H values were used to assign the relative configurations of C17 and
C18 of 1.
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Figure 3. ROESY correlations (black) between C18-Me/H17 and H15 in 3D model.
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Figure 1. Structure of symbiodinolide (1) with the absolute configurations (17R, 18R, and 21R) in fragment 2 determined in the present study.
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evaporated in vacuo. The residue was purified through a silica gel
column, and then HPLC [Develosil ODS-HG-5 (Ø 10 � 250 mm),
Nomura Chemical, flow rate 4 ml/min, 80–100% aq MeCN,
40 min, linear gradient] to afford a trace amount of bis-(S)- and
(R)-MTPA esters 2s9 and 2r10 of 2, respectively. The 1H NMR data
for two bis-MTPA derivatives are assigned by the analysis of COSY
correlations. Dd values (Dd = dS � dR) obtained from the 1H NMR
data of 2s and 2r showed positive signs for H21 (+0.03), H22
(+0.05), H23 (+0.12), and H24 (+0.09), and negative signs for H17
(�0.06), H16 (�0.11), H15 (�0.08), and H14 (�0.03) shown in
Figure 4. These results were consistent with the syn-1,5-diols noted
by Riguera for acyclic systems (Fig. 5).4,5b Thus, suggesting C17 and
Symbiodinolide (1)
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Scheme 1. C14�C23 fragment 2 obtained b
C21 possessed R- and R-configurations, respectively. Therefore, the
absolute configurations of C14�C23 2 were assigned as 17R, 18R,
and 21R.

In conclusion, an erythro configuration was assigned between
the vicinal centers C17 and C18 in 62-membered lactone of
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OR

Me

OR

+0.03-0.06

+0.12

+0.05

+0.02

-0.06
-0.02

-0.11

-0.08

-0.07 +0.09

MeO

OMe

-0.03

2s, R = (S)-MTPA
2r,  R = (R)-MTPA

Figure 4. DdS–R values for the bis-MTPA derivatives of 2.
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Figure 5. Preditive DdS–R (+ or �) patterns for the bis-MTPA esters of acyclic
1,5-diols.
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symbiodinolide (1) on the basis of J-based configuration analysis
and ROESY correlations. Using ethenolysis with Hoveyda-Grubbs
II catalyst, a degradation product C14�C23 2 was obtained from
1, and the absolute configurations of three chiral centers in 2 were
assigned as 17R, 18R, and 21R by the Mosher–Riguera method.
Further chemical degradation studies in order to obtain the new
fragments and a complete assignment of the absolute stereochem-
istry of symbiodinolide are currently underway.
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